Disruption of prepulse inhibition by 3,4-methylenedioxymethamphetamine (MDMA): comparison between male and female wild-type and 5-HT(1A) receptor knockout mice.
نویسندگان
چکیده
The aim of this study was to investigate the involvement of serotonin-1A (5-HT(1A)) receptors in the effects of 3,4-methylenedioxymetamphetamine (MDMA) on prepulse inhibition of acoustic startle (PPI) by comparing male and female wild-type (WT) mice and 5-HT(1A) receptor knockout (1AKO) mice. MDMA dose-dependently decreased PPI in male and female mice although female mice were more sensitive at the 100-ms inter-stimulus interval (ISI). In male mice, 10 mg/kg MDMA disrupted PPI in 1AKO but not in WT controls. There was no genotype difference at higher or lower doses of MDMA. In female mice, there was no difference between genotypes at any dose of MDMA. Average startle was reduced by 10 mg/kg and 20 mg/kg MDMA similarly in male and female mice and all genotypes. These results show an involvement of 5-HT(1A) receptors in the effect of MDMA on PPI in male, but not female mice.
منابع مشابه
Hen Locomotor response to MDMA is attenuated in knockout mice lacking the 5 - HT 1 B receptor
3,4-Methylenedioxymethamphetamine (MDMA) is a psychoactive drug of abuse which is increasingly popular in human recreational drug use. In rats, the drug has been shown to stimulate locomotion while decreasing exploratory behavior. MDMA acts as an indirect agonist of serotonin (5-HT) receptors by inducing 5-HT release by a 5-HT reuptake transporterdependent mechanism, although it is not known wh...
متن کاملDifferential long-term effects of MDMA on the serotoninergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice.
Although numerous studies investigated the mechanisms underlying 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, little is known about its long-term functional consequences on 5-HT neurotransmission in mice. This led us to evaluate the delayed effects of MDMA exposure on the 5-HT system, using in-vitro and in-vivo approaches in both 5-HTT wild-type and knock-out mice. Acute MDMA...
متن کاملRole of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, ...
متن کاملRepeated adolescent 3,4-methylenedioxymethamphetamine (MDMA) exposure in rats attenuates the effects of a subsequent challenge with MDMA or a 5-hydroxytryptamine(1A) receptor agonist.
Adolescent users of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) may escalate their dose because of the development of tolerance. We examined the influence of intermittent adolescent MDMA exposure on the behavioral, physiological, and neurochemical responses to a subsequent MDMA "binge" or to a 5-hydroxytryptamine(1A) (5-HT(1A)) receptor challenge. Male Sprague-Dawley rats were given MDMA ...
متن کاملSerotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro.
The "club drug" 3,4-methylenedioxymethamphetamine (MDMA; also known as ecstasy) binds preferentially to and reverses the activity of the serotonin transporter, causing release of serotonin [5-hydroxytryptamine (5-HT)] stores from nerve terminals. Subsequent activation of postsynaptic 5-HT receptors by released 5-HT has been shown to be critical for the unique psychostimulatory effects of MDMA. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2011